开局flutter,直呼内行
(打算再复现一下Re2,然后就 咕咕咕(bushi)
Re1
题目开局花指令常见花指令识别与处理方案 | 我的CTF学习笔记 (shi1011.cn)
去掉花指令后,正常F5,发现虚假控制流
对输入进行了条件约束

将起始下标定位到输入的WMCTF{
后一位Str[6]
,而后进入控制流顺序执行。
首先开辟了一块大小为576的内存空间,给地址为首先将Block
指针转为DOWRD*
,而后*(Block + 273) = 0xdead

进入case 0
,取了前四位字符,循环写入了四段数据

而后运行至case 1
,取四字符之后的16位,写入Block + 530
对应的地址空间

而后就是运行case 2
了,此时index已经是6 + 4 + 16
,而分析case 2
发现其对之后的每五位进行处理,最大能够处理三组数据。
五位中,第一位被拿来作为不同函数调用的标志,再分别将后四位十六进制字符转换成int类型,而后调用相关函数
v7 = index++;
str_7 = Str[v7]; // Str[27]
if ( str_7 == '_' && index + 4 <= length )
{
if ( (Str[index] < '0' || Str[index] > '9') && (Str[index] < 'A' || Str[index] > 'F')
|| (Str[index + 1] < '0' || Str[index + 1] > '9') && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < '0' || Str[index + 2] > '9') && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < '0' || Str[index + 3] > '9') && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v8 = index++;
str_8 = Str[v8];
v9 = index++;
str_9 = Str[v9];
str_10 = hex2int(str_8, str_9); // 十六进制转十进制
v10 = index++;
str_8 = Str[v10];
v11 = index++;
str_9 = Str[v11];
vars9B = hex2int(str_8, str_9);
sub_140003320((__int64)Block, str_10, vars9B);
}
}
else if ( str_7 == '@' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v12 = index++;
str_8 = Str[v12];
v13 = index++;
str_9 = Str[v13];
str_10 = hex2int(str_8, str_9);
v14 = index++;
str_8 = Str[v14];
v15 = index++;
str_9 = Str[v15];
vars9B = hex2int(str_8, str_9);
sub_140003390((__int64)Block, str_10, vars9B);
}
}
else if ( str_7 == '#' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v16 = index++;
str_8 = Str[v16];
v17 = index++;
str_9 = Str[v17];
str_10 = hex2int(str_8, str_9);
v18 = index++;
str_8 = Str[v18];
v19 = index++;
str_9 = Str[v19];
vars9B = hex2int(str_8, str_9);
sub_1400033F0(Block, str_10, vars9B);
}
}
else if ( str_7 == '?' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v20 = index++;
str_8 = Str[v20];
v21 = index++;
str_9 = Str[v21];
str_10 = hex2int(str_8, str_9);
v22 = index++;
str_8 = Str[v22];
v23 = index++;
str_9 = Str[v23];
vars9B = hex2int(str_8, str_9);
sub_140003470((__int64)Block, str_10, vars9B);
}
}
else if ( str_7 == '!' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v24 = index++;
str_8 = Str[v24];
v25 = index++;
str_9 = Str[v25];
str_10 = hex2int(str_8, str_9);
v26 = index++;
str_8 = Str[v26];
v27 = index++;
str_9 = Str[v27];
vars9B = hex2int(str_8, str_9);
sub_140003500(Block, str_10, vars9B);
}
}
else if ( str_7 == '&' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v28 = index++;
str_8 = Str[v28];
v29 = index++;
str_9 = Str[v29];
str_10 = hex2int(str_8, str_9);
v30 = index++;
str_8 = Str[v30];
v31 = index++;
str_9 = Str[v31];
vars9B = hex2int(str_8, str_9);
sub_140003580(Block, str_10, vars9B);
}
}
else if ( str_7 == '-' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v32 = index++;
str_8 = Str[v32];
v33 = index++;
str_9 = Str[v33];
str_10 = hex2int(str_8, str_9);
v34 = index++;
str_8 = Str[v34];
v35 = index++;
str_9 = Str[v35];
vars9B = hex2int(str_8, str_9);
sub_1400035E0(Block, str_10, vars9B);
}
}
else if ( str_7 == '$' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v36 = index++;
str_8 = Str[v36];
v37 = index++;
str_9 = Str[v37];
str_10 = hex2int(str_8, str_9);
v38 = index++;
str_8 = Str[v38];
v39 = index++;
str_9 = Str[v39];
vars9B = hex2int(str_8, str_9);
sub_1400036A0(Block, str_10, vars9B);
}
}
else if ( str_7 == '+' && index + 4 <= length )
{
if ( (Str[index] < 48 || Str[index] > 57) && (Str[index] < 65 || Str[index] > 70)
|| (Str[index + 1] < 48 || Str[index + 1] > 57) && (Str[index + 1] < 65 || Str[index + 1] > 70)
|| (Str[index + 2] < 48 || Str[index + 2] > 57) && (Str[index + 2] < 65 || Str[index + 2] > 70)
|| (Str[index + 3] < 48 || Str[index + 3] > 57) && (Str[index + 3] < 65 || Str[index + 3] > 70) )
{
vars9A = 1;
}
else
{
v40 = index++;
str_8 = Str[v40];
v41 = index++;
str_9 = Str[v41];
str_10 = hex2int(str_8, str_9);
v42 = index++;
str_8 = Str[v42];
v43 = index++;
str_9 = Str[v43];
vars9B = hex2int(str_8, str_9);
sub_140003730((__int64)Block, str_10, vars9B);
}
}
else
{
Block[str_7 + 257] += str_7;
vars9A = 1;
}
break;
理解不了,先放一放,看后面
分析后,发现,cond开头的四个参数可以通过z3求出,而且,其值源自boxXor
,虽然它不可逆,但我们在分析case 0
的时候就知道,Block
,Block + 257
……四段正好是由四个字符处理而来。

考虑爆破出4字符
import z3
cond1 = z3.BitVec("cond1", 32)
cond2 = z3.BitVec("cond2", 32)
cond3 = z3.BitVec("cond3", 32)
cond4 = z3.BitVec("cond4", 32)
result1 = cond2 + cond1 == 0x11AB7A7A
result2 = cond2 - cond3 == 0x1CD4F222
result3 = cond4 + cond3 == 0xC940F021
result4 = cond3 + cond1 - cond4 == 0x7C7D68D1
solve = z3.Solver()
solve.add(result1)
solve.add(result2)
solve.add(result3)
solve.add(result4)
if solve.check() == z3.sat:
m = solve.model()
cond1 = m.eval(cond1).as_long()
cond2 = m.eval(cond2).as_long()
cond3 = m.eval(cond3).as_long()
cond4 = m.eval(cond4).as_long()
print(hex(cond1), hex(cond2), hex(cond3), hex(cond4))
import string
box = [0x00000000, 0x703A11DE, 0xE07423BC, 0x904E3262, 0xC6A99C09, 0xB6938DD7, 0x26DDBFB5, 0x56E7AE6B, 0x8B12E363,
0xFB28F2BD, 0x6B66C0DF, 0x1B5CD101, 0x4DBB7F6A, 0x3D816EB4, 0xADCF5CD6, 0xDDF54D08, 0x10641DB7, 0x605E0C69,
0xF0103E0B, 0x802A2FD5, 0xD6CD81BE, 0xA6F79060, 0x36B9A202, 0x4683B3DC, 0x9B76FED4, 0xEB4CEF0A, 0x7B02DD68,
0x0B38CCB6, 0x5DDF62DD, 0x2DE57303, 0xBDAB4161, 0xCD9150BF, 0x20C83B6E, 0x50F22AB0, 0xC0BC18D2, 0xB086090C,
0xE661A767, 0x965BB6B9, 0x061584DB, 0x762F9505, 0xABDAD80D, 0xDBE0C9D3, 0x4BAEFBB1, 0x3B94EA6F, 0x6D734404,
0x1D4955DA, 0x8D0767B8, 0xFD3D7666, 0x30AC26D9, 0x40963707, 0xD0D80565, 0xA0E214BB, 0xF605BAD0, 0x863FAB0E,
0x1671996C, 0x664B88B2, 0xBBBEC5BA, 0xCB84D464, 0x5BCAE606, 0x2BF0F7D8, 0x7D1759B3, 0x0D2D486D, 0x9D637A0F,
0xED596BD1, 0x419076DC, 0x31AA6702, 0xA1E45560, 0xD1DE44BE, 0x8739EAD5, 0xF703FB0B, 0x674DC969, 0x1777D8B7,
0xCA8295BF, 0xBAB88461, 0x2AF6B603, 0x5ACCA7DD, 0x0C2B09B6, 0x7C111868, 0xEC5F2A0A, 0x9C653BD4, 0x51F46B6B,
0x21CE7AB5, 0xB18048D7, 0xC1BA5909, 0x975DF762, 0xE767E6BC, 0x7729D4DE, 0x0713C500, 0xDAE68808, 0xAADC99D6,
0x3A92ABB4, 0x4AA8BA6A, 0x1C4F1401, 0x6C7505DF, 0xFC3B37BD, 0x8C012663, 0x61584DB2, 0x11625C6C, 0x812C6E0E,
0xF1167FD0, 0xA7F1D1BB, 0xD7CBC065, 0x4785F207, 0x37BFE3D9, 0xEA4AAED1, 0x9A70BF0F, 0x0A3E8D6D, 0x7A049CB3,
0x2CE332D8, 0x5CD92306, 0xCC971164, 0xBCAD00BA, 0x713C5005, 0x010641DB, 0x914873B9, 0xE1726267, 0xB795CC0C,
0xC7AFDDD2, 0x57E1EFB0, 0x27DBFE6E, 0xFA2EB366, 0x8A14A2B8, 0x1A5A90DA, 0x6A608104, 0x3C872F6F, 0x4CBD3EB1,
0xDCF30CD3, 0xACC91D0D, 0x8320EDB8, 0xF31AFC66, 0x6354CE04, 0x136EDFDA, 0x458971B1, 0x35B3606F, 0xA5FD520D,
0xD5C743D3, 0x08320EDB, 0x78081F05, 0xE8462D67, 0x987C3CB9, 0xCE9B92D2, 0xBEA1830C, 0x2EEFB16E, 0x5ED5A0B0,
0x9344F00F, 0xE37EE1D1, 0x7330D3B3, 0x030AC26D, 0x55ED6C06, 0x25D77DD8, 0xB5994FBA, 0xC5A35E64, 0x1856136C,
0x686C02B2, 0xF82230D0, 0x8818210E, 0xDEFF8F65, 0xAEC59EBB, 0x3E8BACD9, 0x4EB1BD07, 0xA3E8D6D6, 0xD3D2C708,
0x439CF56A, 0x33A6E4B4, 0x65414ADF, 0x157B5B01, 0x85356963, 0xF50F78BD, 0x28FA35B5, 0x58C0246B, 0xC88E1609,
0xB8B407D7, 0xEE53A9BC, 0x9E69B862, 0x0E278A00, 0x7E1D9BDE, 0xB38CCB61, 0xC3B6DABF, 0x53F8E8DD, 0x23C2F903,
0x75255768, 0x051F46B6, 0x955174D4, 0xE56B650A, 0x389E2802, 0x48A439DC, 0xD8EA0BBE, 0xA8D01A60, 0xFE37B40B,
0x8E0DA5D5, 0x1E4397B7, 0x6E798669, 0xC2B09B64, 0xB28A8ABA, 0x22C4B8D8, 0x52FEA906, 0x0419076D, 0x742316B3,
0xE46D24D1, 0x9457350F, 0x49A27807, 0x399869D9, 0xA9D65BBB, 0xD9EC4A65, 0x8F0BE40E, 0xFF31F5D0, 0x6F7FC7B2,
0x1F45D66C, 0xD2D486D3, 0xA2EE970D, 0x32A0A56F, 0x429AB4B1, 0x147D1ADA, 0x64470B04, 0xF4093966, 0x843328B8,
0x59C665B0, 0x29FC746E, 0xB9B2460C, 0xC98857D2, 0x9F6FF9B9, 0xEF55E867, 0x7F1BDA05, 0x0F21CBDB, 0xE278A00A,
0x9242B1D4, 0x020C83B6, 0x72369268, 0x24D13C03, 0x54EB2DDD, 0xC4A51FBF, 0xB49F0E61, 0x696A4369, 0x195052B7,
0x891E60D5, 0xF924710B, 0xAFC3DF60, 0xDFF9CEBE, 0x4FB7FCDC, 0x3F8DED02, 0xF21CBDBD, 0x8226AC63, 0x12689E01,
0x62528FDF, 0x34B521B4, 0x448F306A, 0xD4C10208, 0xA4FB13D6, 0x790E5EDE, 0x09344F00, 0x997A7D62, 0xE9406CBC,
0xBFA7C2D7, 0xCF9DD309, 0x5FD3E16B, 0x2FE9F0B5]
def boxXor(a1, a2, a3):
v5 = 0
v4 = a1
while v5 < a3:
v4 = (v4 >> 8) ^ box[(a2[v5] ^ v4) & 0xff]
v5 += 1
return a1 ^ v4
def genBlock(a1, a2, a3):
block = []
for i in range(a3):
block.append(i + a1 + a2)
return block
cond0 = 0xFFFFFFFE
for c in string.printable:
block = genBlock(ord(c), 0, 256)
cond = boxXor(cond0, block, 256)
if cond == cond1:
print("find Str[7]: " + c)
for c in string.printable:
block = genBlock(ord(c), 1, 256)
cond = boxXor(cond1, block, 256)
if cond == cond2:
print("find Str[8]: " + c)
for c in string.printable:
block = genBlock(ord(c), 2, 0xf)
cond = boxXor(cond2, block, 0xf)
if cond == cond3:
print("find Str[9]: " + c)
for c in string.printable:
block = genBlock(ord(c), 3, 0x1c)
cond = boxXor(cond3, block, 0x1c)
if cond == cond4:
print("find Str[9]: " + c)
# Hah4
爆破得到Hah4
而后在上图也可以看到,我分析后标注了xteaEncrypt
函数,key
和src
,但同时我也注释了两个unknown
,为什么?后面再讲。
第一时间,当我们看到

很快能够想到之前case 0
似乎有出现给Block + 273
这一地址空间赋值0xdead
于是我们尝试解密,发现并不是可见字符——key是错误的。
0~0xffff
尝试爆破出真正的值
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <windows.h>
#include <iostream>
void xteaEnc(DWORD *v, DWORD *kj, DWORD *a3)
{
unsigned int *result; // rax
unsigned int v4; // [rsp+0h] [rbp-30h]
unsigned int v5; // [rsp+Ch] [rbp-24h]
unsigned int v6; // [rsp+10h] [rbp-20h]
unsigned int i; // [rsp+14h] [rbp-1Ch]
v6 = *v;
v5 = v[1];
v4 = 0;
for ( i = 0; i < 0x20; ++i )
{
v6 += (kj[v4 & 3] + v4) ^ (v5 + ((v5 >> 5) ^ (16 * v5)));
v4 -= 0x667E5433;
v5 += (kj[(v4 >> 11) & 3] + v4) ^ (v6 + ((v6 >> 5) ^ (16 * v6)));
}
*a3 = v6;
a3[1] = v5;
}
void xteaDec(DWORD *v, DWORD *kj, DWORD *a3)
{
unsigned int *result; // rax
unsigned int v4; // [rsp+0h] [rbp-30h]
unsigned int v5; // [rsp+Ch] [rbp-24h]
unsigned int v6; // [rsp+10h] [rbp-20h]
unsigned int i; // [rsp+14h] [rbp-1Ch]
v6 = *v;
v5 = v[1];
v4 = 0x303579a0;
for ( i = 0; i < 0x20; ++i )
{
v5 -= (kj[(v4 >> 11) & 3] + v4) ^ (v6 + ((v6 >> 5) ^ (16 * v6)));
v4 += 0x667E5433;
v6 -= (kj[v4 & 3] + v4) ^ (v5 + ((v5 >> 5) ^ (16 * v5)));
}
*a3 = v6;
a3[1] = v5;
}
void DWORD2BYTE(uint8_t* Dst, uint64_t Value, const std::string& byteorder) {
/* ============================
* byteorder = "big" / "little"
* */
if (byteorder == "big") {
// big
for (int i = 0; i < 4; ++i) {
Dst[3 - i] = Value & 0xff;
Value >>= 8;
}
} else if (byteorder == "little") {
// little
for (int i = 0; i < 4; ++i) {
Dst[i] = Value & 0xff;
Value >>= 8;
}
} else {
perror("plz check byteorder");
}
}
void fuzzing() {
DWORD P1 = 0xa3eeb7be,
P2 = 0x6dbcc2bc,
P3 = 0x50e7d09a,
P4 = 0x78591f87;
DWORD plaintext[2] = {0x556E2853, 0x4393DF16};
for (int fuz = 0; fuz < 0x10000; ++fuz) {
DWORD vars7C = P4 & 0xFFFFFF00 | (unsigned __int8)fuz;
P3 &= 0xFFFF00FF;
P3 |= fuz & 0xFF00;
DWORD key[4] = {P1, P3, P2, vars7C};
DWORD result[2];
xteaDec(plaintext, key, result);
BYTE flag[9] = {0};
DWORD2BYTE(flag, result[0], "little");
DWORD2BYTE(&flag[4], result[1], "little");
int find = 1;
for (int i = 0; i < 8; ++i) {
if (flag[i] > 'z' || flag[i] < ' ') {
find = 0;
break;
}
}
if (find) {
printf("bytes: %x FLAG: %s\n", fuz, flag);
}
}
}
int main()
{
fuzzing();
return 0;
}
看到明文

尝试解密
int main()
{
DWORD P1 = 0xa3eeb7be,
P2 = 0x6dbcc2bc,
P3 = 0x50e7d09a,
P4 = 0x78591f87;
DWORD vars7C = P4 & 0xFFFFFF00 | (unsigned __int8)0xb7ad; // 不知道对不对
P3 &= 0xFFFF00FF;
P3 |= 0xb7ad & 0xFF00; // todo: unknown
DWORD plaintext[2] = {0x556E2853, 0x4393DF16};
DWORD key[4] = {P1, P3, P2, vars7C};
DWORD result[2];
xteaDec(plaintext, key, result);
printf("%lx %lx\n", result[0], result[1]);
DWORD plaintext2[2] = {0x1989FB2B, 0x83F5A243};
DWORD key2[4] = {vars7C, P2, P1, P3};
DWORD result2[2];
xteaDec(plaintext2, key2, result2);
printf("%lx %lx\n", result2[0], result2[1]);
BYTE flag[17] = {0};
DWORD2BYTE(flag, result[0], "little");
DWORD2BYTE(&flag[4], result2[0], "little");
DWORD2BYTE(&flag[8], result2[1], "little");
DWORD2BYTE(&flag[12], result[1], "little");
printf("%s\n", flag);
printf("%08lx %08lx %08lx %08lx\n", result[0], result2[0], result2[1] ,result[1]);
return 0;
}
得到_D0_yOu_L1kE_It!
现在我们拿到了前半段flag,下面就是考虑如何拿到后半段flag
切入点:Block + 273
既然Block + 273
被修改了,猜测是在case 2
执行过程中修改了它
分析各个函数,想办法能够修改到Block + 273
// @FF FE
// #0F 20
// -11 B7
Block[546] = 0xDEAD;
Block[256] = 0xfe;
Block[528] = 0x20;
Block[547] = 0xb7;
// _
__int64 __fastcall sub_140003320(__int64 a1, unsigned __int8 a2, char a3)
{
__int64 result; // rax
result = (unsigned int)(dword_140027A50 + 1);
dword_140027A50 = result;
if ( (unsigned int)result <= 1 )
{
result = a1 + 548;
*(_BYTE *)(a1 + 548 + ((int)a2 >> 4) + 1) = a3;// 549 ~ 565
}
return result;
}
// @
__int64 __fastcall sub_140003390(__int64 a1, char a2, char a3)
{
__int64 result; // rax
result = (unsigned int)(dword_140027A54 + 1);
dword_140027A54 = result;
if ( (unsigned int)result <= 1 )
{
result = a1 + 257;
*(_BYTE *)(a1 + 257 + a2) = a3; // 注意-1溢出 - 256
}
return result;
}
// #
__int64 __fastcall sub_1400033F0(_BYTE *a1, char a2, char a3)
{
__int64 result; // rax
result = (unsigned int)(dword_140027A50 + 1);
dword_140027A50 = result;
if ( (unsigned int)result <= 1 )
{
result = (unsigned __int8)a1[256];
if ( (_DWORD)result == 0xFE )
{
result = (unsigned int)a2;
if ( (int)result < 0x10 )
{
result = (__int64)(a1 + 513);
a1[a2 + 513] = a3; // 513 ~ 768 528
}
}
}
return result;
}
// ?
__int64 __fastcall sub_140003470(__int64 a1, char a2, char a3)
{
__int64 result; // rax
result = (unsigned int)(dword_140027A58 + 1);
dword_140027A58 = result;
if ( (unsigned int)result <= 1 )
{
result = *(unsigned __int16 *)(a1 + 528) / 3;
if ( !(*(unsigned __int16 *)(a1 + 528) % 3) )
{
result = a1 + 530;
*(_BYTE *)(a1 + 530 + (a2 & 0xC)) = a3; // 530 ~ 542 -> 530, 534, 538, 542
}
}
return result;
}
// -
__int64 __fastcall sub_1400035E0(_BYTE *a1, char a2, char a3)
{
__int64 result; // rax
result = (unsigned int)(dword_140027A60 + 1);
dword_140027A60 = result;
if ( (unsigned int)result <= 1 )
{
result = *((unsigned __int16 *)a1 + 264) / 16; // a1[528]
if ( !(*((unsigned __int16 *)a1 + 264) % 16) )
{
result = *((unsigned __int16 *)a1 + 264) / 16;
if ( (unsigned int)(*((unsigned __int16 *)a1 + 264) / 16) < 3 )
{
result = (unsigned int)a2;
if ( (int)result <= *((unsigned __int16 *)a1 + 264) )
{
result = (__int64)(a1 + 530);
a1[a2 + 530] = a3;
}
}
}
}
return result;
}
这里就需要试着套流程 ,依靠脑洞了- -
最后得到@FFFE#0F20-11B7
tips: 这里的@,用到了一个0xff的溢出(-1)
Re2
android题,主逻辑一如既往在ndk
动态注册的函数调用。
先瞟一眼.init_array

看起来是加了混淆

再看JNI_OnLoad

发现一个出题者挖的坑,检测了调试机的root

试了试frida直接hook,结果hook不住……(有知道为啥的大佬教一下我)那就直接patch so吧

打包回去,安装

尴尬,改一下AndroidManifest.xml里的android:extractNativeLibs

再来

调试环境整好,下面先静态分析一下。
程序的正常流程是在这里注册

注册的函数为sub_10134

分析出来,先进行了AES加密而后进行RC4,这里的算法都是经过一定的魔改,并不是标准算法。
最后与stru_46000[0].n128_u8[v11]
比对
KeyExpansion
是标准的密钥扩展算法,AES主要的修改点在于Sbox和ShiftRows部分


而RC4的修改,在于最后异或时多异或了0x50

算法是分析完了,那么如何拿到AES Key,IV和RC4Key?
我们前面看到.init_array
是对一些数据的解密,静态提取是不可取了,那就动态跑起来取,Frida Hook(动态调试So也是可以的)
function awaitHook() {
Java.perform(function(){
var ptr = Module.findBaseAddress("libnative-lib.so");
if(ptr==null){ return 0;}
Interceptor.attach(ptr.add(0x011E6C),{
onEnter:function(arg){
console.log("\nHooking - AESEncrypt - IV: \n" + hexdump(arg[0].add(176), {length:16}));
console.log("\nHooking - AESEncrypt - Text: \n" + arg[1].readCString());
},
onLeave:function(arg){
console.log("\nHooking - AESEncrypt - EncText: \n", hexdump(arg, {length:32}));
console.log("Hooking - AESEncrypt - EXIT");
}
})
Interceptor.attach(ptr.add(0x00011820), {
onEnter: function(args) {
console.log("\narg[1] - AESKey\n" + hexdump(args[1], {length:16}));
},
onLeave: function(arg) {
// console.log("leave");
}
})
})
}
setImmediate(function(){
setTimeout(awaitHook,10);
})
// frida -U come.wmctf.crackme111 -l ctf.js --no-pause

下面继续取RC4的Key
Interceptor.attach(ptr.add(0x011624), {
onEnter: function(args) {
console.log("\narg[1] - RC4Key\n" + args[1].readCString());
},
onLeave: function(arg) {
// console.log("leave");
}
})
拿到RC4Key:Hello from C++
再去Hook比对的加密文本
console.log("hooking - EncData[32]\n", hexdump(ptr.add(0x046000),{length:32}));

撸脚本解密了
from Crypto.Cipher import ARC4
rc4CipherText = bytearray(bytes.fromhex("18 76 eb 87 76 3e 77 08 c0 8d 56 25 9e 35 0d 16 23 65 61 6a 14 9d 4f 1c 64 21 7d 78 ba 53 91 22"))
for i, v in enumerate(rc4CipherText):
rc4CipherText[i] = v ^ 0x50
key = "Hello from C++"
rc4 = ARC4.new(key.encode())
aesCipherText = rc4.decrypt(rc4CipherText).hex()
print(aesCipherText)
拿出Sbox,跑出InvBox,修改ShiftRows

aes.cpp
#include <stdio.h>
#include <memory.h>
#include "AES.h"
//
// Public Definitions
//
/* moved to rijndael.h */
//
// Internal Definitions
//
/*
* Encryption Rounds
*/
int g_aes_key_bits[] = {
/* AES_CYPHER_128 */ 128,
/* AES_CYPHER_192 */ 192,
/* AES_CYPHER_256 */ 256,
};
int g_aes_rounds[] = {
/* AES_CYPHER_128 */ 10,
/* AES_CYPHER_192 */ 12,
/* AES_CYPHER_256 */ 14,
};
int g_aes_nk[] = {
/* AES_CYPHER_128 */ 4,
/* AES_CYPHER_192 */ 6,
/* AES_CYPHER_256 */ 8,
};
int g_aes_nb[] = {
/* AES_CYPHER_128 */ 4,
/* AES_CYPHER_192 */ 4,
/* AES_CYPHER_256 */ 4,
};
/*
* aes Rcon:
*
* WARNING: Rcon is designed starting from 1 to 15, not 0 to 14.
* FIPS-197 Page 9: "note that i starts at 1, not 0"
*
* i | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* -----+------------------------------------------------------------------------------------------
* | [01] [02] [04] [08] [10] [20] [40] [80] [1b] [36] [6c] [d8] [ab] [4d] [9a]
* RCON | [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00]
* | [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00]
* | [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00] [00]
*/
static const uint32_t g_aes_rcon[] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1b000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0xed000000, 0x9a000000
};
/* aes sbox and invert-sbox */
static const uint8_t g_aes_sbox[256] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t g_inv_sbox[256] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbe, 0x40, 0xa3, 0x9e, 0x80, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x02, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x04, 0xc1, 0xaf, 0xbd, 0x03, 0x00, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbf, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x81, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x01, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
uint8_t aes_sub_sbox(uint8_t val)
{
return g_aes_sbox[val];
}
uint32_t aes_sub_dword(uint32_t val)
{
uint32_t tmp = 0;
tmp |= ((uint32_t)aes_sub_sbox((uint8_t)((val >> 0) & 0xFF))) << 0;
tmp |= ((uint32_t)aes_sub_sbox((uint8_t)((val >> 8) & 0xFF))) << 8;
tmp |= ((uint32_t)aes_sub_sbox((uint8_t)((val >> 16) & 0xFF))) << 16;
tmp |= ((uint32_t)aes_sub_sbox((uint8_t)((val >> 24) & 0xFF))) << 24;
return tmp;
}
uint32_t aes_rot_dword(uint32_t val)
{
uint32_t tmp = val;
return (val >> 8) | ((tmp & 0xFF) << 24);
}
uint32_t aes_swap_dword(uint32_t val)
{
return (((val & 0x000000FF) << 24) |
((val & 0x0000FF00) << 8) |
((val & 0x00FF0000) >> 8) |
((val & 0xFF000000) >> 24) );
}
/*
* nr: number of rounds
* nb: number of columns comprising the state, nb = 4 dwords (16 bytes)
* nk: number of 32-bit words comprising cipher key, nk = 4, 6, 8 (KeyLength/(4*8))
*/
void aes_key_expansion(AES_CYPHER_T mode, uint8_t *key, uint8_t *round)
{
uint32_t *w = (uint32_t *)round;
uint32_t t;
int i = 0;
printf("Key Expansion:\n");
do {
w[i] = *((uint32_t *)&key[i * 4 + 0]);
printf(" %2.2d: rs: %8.8x\n", i, aes_swap_dword(w[i]));
} while (++i < g_aes_nk[mode]);
do {
printf(" %2.2d: ", i);
if ((i % g_aes_nk[mode]) == 0) {
t = aes_rot_dword(w[i - 1]);
printf(" rot: %8.8x", aes_swap_dword(t));
t = aes_sub_dword(t);
printf(" sub: %8.8x", aes_swap_dword(t));
printf(" rcon: %8.8x", g_aes_rcon[i/g_aes_nk[mode] - 1]);
t = t ^ aes_swap_dword(g_aes_rcon[i/g_aes_nk[mode] - 1]);
printf(" xor: %8.8x", t);
} else if (g_aes_nk[mode] > 6 && (i % g_aes_nk[mode]) == 4) {
t = aes_sub_dword(w[i - 1]);
printf(" sub: %8.8x", aes_swap_dword(t));
} else {
t = w[i - 1];
printf(" equ: %8.8x", aes_swap_dword(t));
}
w[i] = w[i - g_aes_nk[mode]] ^ t;
printf(" rs: %8.8x\n", aes_swap_dword(w[i]));
} while (++i < g_aes_nb[mode] * (g_aes_rounds[mode] + 1));
/* key can be discarded (or zeroed) from memory */
}
void aes_add_round_key(AES_CYPHER_T mode, uint8_t *state, uint8_t *round, int nr)
{
uint32_t *w = (uint32_t *)round;
uint32_t *s = (uint32_t *)state;
int i;
for (i = 0; i < g_aes_nb[mode]; i++) {
s[i] ^= w[nr * g_aes_nb[mode] + i];
}
}
void aes_sub_bytes(AES_CYPHER_T mode, uint8_t *state)
{
int i, j;
for (i = 0; i < g_aes_nb[mode]; i++) {
for (j = 0; j < 4; j++) {
state[i * 4 + j] = aes_sub_sbox(state[i * 4 + j]);
}
}
}
void aes_shift_rows(AES_CYPHER_T mode, uint8_t *state)
{
uint8_t *s = (uint8_t *)state;
int i, j, r;
for (i = 1; i < g_aes_nb[mode]; i++) {
for (j = 0; j < i; j++) {
uint8_t tmp = s[i];
for (r = 0; r < g_aes_nb[mode]; r++) {
s[i + r * 4] = s[i + (r + 1) * 4];
}
s[i + (g_aes_nb[mode] - 1) * 4] = tmp;
}
}
}
uint8_t aes_xtime(uint8_t x)
{
return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
}
uint8_t aes_xtimes(uint8_t x, int ts)
{
while (ts-- > 0) {
x = aes_xtime(x);
}
return x;
}
uint8_t aes_mul(uint8_t x, uint8_t y)
{
/*
* encrypt: y has only 2 bits: can be 1, 2 or 3
* decrypt: y could be any value of 9, b, d, or e
*/
return ((((y >> 0) & 1) * aes_xtimes(x, 0)) ^
(((y >> 1) & 1) * aes_xtimes(x, 1)) ^
(((y >> 2) & 1) * aes_xtimes(x, 2)) ^
(((y >> 3) & 1) * aes_xtimes(x, 3)) ^
(((y >> 4) & 1) * aes_xtimes(x, 4)) ^
(((y >> 5) & 1) * aes_xtimes(x, 5)) ^
(((y >> 6) & 1) * aes_xtimes(x, 6)) ^
(((y >> 7) & 1) * aes_xtimes(x, 7)) );
}
void aes_mix_columns(AES_CYPHER_T mode, uint8_t *state)
{
uint8_t y[16] = { 2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 3, 1, 1, 2};
uint8_t s[4];
int i, j, r;
for (i = 0; i < g_aes_nb[mode]; i++) {
for (r = 0; r < 4; r++) {
s[r] = 0;
for (j = 0; j < 4; j++) {
s[r] = s[r] ^ aes_mul(state[i * 4 + j], y[r * 4 + j]);
}
}
for (r = 0; r < 4; r++) {
state[i * 4 + r] = s[r];
}
}
}
void aes_dump(char *msg, uint8_t *data, int len)
{
int i;
printf("%8.8s: ", msg);
for (i = 0; i < len; i++) {
printf(" %2.2x", data[i]);
}
printf("\n");
}
int aes_encrypt(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key)
{
uint8_t w[4 * 4 * 15] = {0}; /* round key */
uint8_t s[4 * 4] = {0}; /* state */
int nr, i, j;
/* key expansion */
aes_key_expansion(mode, key, w);
/* start data cypher loop over input buffer */
for (i = 0; i < len; i += 4 * g_aes_nb[mode]) {
printf("Encrypting block at %u ...\n", i);
/* init state from user buffer (plaintext) */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
s[j] = data[i + j];
/* start AES cypher loop over all AES rounds */
for (nr = 0; nr <= g_aes_rounds[mode]; nr++) {
printf(" Round %d:\n", nr);
aes_dump("input", s, 4 * g_aes_nb[mode]);
if (nr > 0) {
/* do SubBytes */
aes_sub_bytes(mode, s);
aes_dump(" sub", s, 4 * g_aes_nb[mode]);
/* do ShiftRows */
aes_shift_rows(mode, s);
aes_dump(" shift", s, 4 * g_aes_nb[mode]);
if (nr < g_aes_rounds[mode]) {
/* do MixColumns */
aes_mix_columns(mode, s);
aes_dump(" mix", s, 4 * g_aes_nb[mode]);
}
}
/* do AddRoundKey */
aes_add_round_key(mode, s, w, nr);
aes_dump(" round", &w[nr * 4 * g_aes_nb[mode]], 4 * g_aes_nb[mode]);
aes_dump(" state", s, 4 * g_aes_nb[mode]);
}
/* save state (cypher) to user buffer */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
data[i + j] = s[j];
printf("Output:\n");
aes_dump("cypher", &data[i], 4 * g_aes_nb[mode]);
}
return 0;
}
int aes_encrypt_ecb(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key)
{
return aes_encrypt(mode, data, len, key);
}
int aes_encrypt_cbc(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key, uint8_t *iv)
{
uint8_t w[4 * 4 * 15] = {0}; /* round key */
uint8_t s[4 * 4] = {0}; /* state */
uint8_t v[4 * 4] = {0}; /* iv */
int nr, i, j;
/* key expansion */
aes_key_expansion(mode, key, w);
memcpy(v, iv, sizeof(v));
/* start data cypher loop over input buffer */
for (i = 0; i < len; i += 4 * g_aes_nb[mode]) {
/* init state from user buffer (plaintext) */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
s[j] = data[i + j] ^ v[j];
/* start AES cypher loop over all AES rounds */
for (nr = 0; nr <= g_aes_rounds[mode]; nr++) {
aes_dump("input", s, 4 * g_aes_nb[mode]);
if (nr > 0) {
/* do SubBytes */
aes_sub_bytes(mode, s);
aes_dump(" sub", s, 4 * g_aes_nb[mode]);
/* do ShiftRows */
aes_shift_rows(mode, s);
aes_dump(" shift", s, 4 * g_aes_nb[mode]);
if (nr < g_aes_rounds[mode]) {
/* do MixColumns */
aes_mix_columns(mode, s);
aes_dump(" mix", s, 4 * g_aes_nb[mode]);
}
}
/* do AddRoundKey */
aes_add_round_key(mode, s, w, nr);
aes_dump(" round", &w[nr * 4 * g_aes_nb[mode]], 4 * g_aes_nb[mode]);
aes_dump(" state", s, 4 * g_aes_nb[mode]);
}
/* save state (cypher) to user buffer */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
data[i + j] = v[j] = s[j];
}
return 0;
}
void inv_shift_rows(AES_CYPHER_T mode, uint8_t *state)
{
// uint8_t *s = (uint8_t *)state;
// int i, j, r;
//
// for (i = 1; i < g_aes_nb[mode]; i++) {
// for (j = 0; j < g_aes_nb[mode] - i; j++) {
// uint8_t tmp = s[i];
// for (r = 0; r < g_aes_nb[mode]; r++) {
// s[i + r * 4] = s[i + (r + 1) * 4];
// }
// s[i + (g_aes_nb[mode] - 1) * 4] = tmp;
// }
// }
uint8_t result[16];
*result = *(state+0); // result[0] = s[0]
result[4] = *(state+4); // result[4] = s[4]
result[8] = *(state+8); // result[8] = s[8]
result[12] = *(state+12); // result[12] = s[12]
result[5] = *(state+1); // result[1] = s[5]
result[9] = *(state+5); // result[5] = s[9]
result[13] = *(state+9); // result[9] = s[13]
result[1] = *(state+13); // result[13] = s[1]
result[10] = *(state+2); // result[2] = s[10]
result[2] = *(state+10); // result[10] = s[2]
result[14] = *(state+6); // result[6] = s[14]
result[6] = *(state+14); // result[14] = s[6]
result[15] = *(state+3); // result[3] = s[15]
result[11] = *(state+15); // result[15] = s[11]
result[7] = *(state+11); // result[11] = s[7]
result[3] = *(state+7); // result[7] = s[3]
for(int i=0;i<16;i++)
state[i]=result[i];
}
uint8_t inv_sub_sbox(uint8_t val)
{
return g_inv_sbox[val];
}
void inv_sub_bytes(AES_CYPHER_T mode, uint8_t *state)
{
int i, j;
for (i = 0; i < g_aes_nb[mode]; i++) {
for (j = 0; j < 4; j++) {
state[i * 4 + j] = inv_sub_sbox(state[i * 4 + j]);
}
}
}
void inv_mix_columns(AES_CYPHER_T mode, uint8_t *state)
{
uint8_t y[16] = { 0x0e, 0x0b, 0x0d, 0x09, 0x09, 0x0e, 0x0b, 0x0d,
0x0d, 0x09, 0x0e, 0x0b, 0x0b, 0x0d, 0x09, 0x0e};
uint8_t s[4];
int i, j, r;
for (i = 0; i < g_aes_nb[mode]; i++) {
for (r = 0; r < 4; r++) {
s[r] = 0;
for (j = 0; j < 4; j++) {
s[r] = s[r] ^ aes_mul(state[i * 4 + j], y[r * 4 + j]);
}
}
for (r = 0; r < 4; r++) {
state[i * 4 + r] = s[r];
}
}
}
int aes_decrypt(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key)
{
uint8_t w[4 * 4 * 15] = {0}; /* round key */
uint8_t s[4 * 4] = {0}; /* state */
int nr, i, j;
/* key expansion */
aes_key_expansion(mode, key, w);
/* start data cypher loop over input buffer */
for (i = 0; i < len; i += 4 * g_aes_nb[mode]) {
printf("Decrypting block at %u ...\n", i);
/* init state from user buffer (cyphertext) */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
s[j] = data[i + j];
/* start AES cypher loop over all AES rounds */
for (nr = g_aes_rounds[mode]; nr >= 0; nr--) {
printf(" Round %d:\n", nr);
aes_dump("input", s, 4 * g_aes_nb[mode]);
/* do AddRoundKey */
aes_add_round_key(mode, s, w, nr);
aes_dump(" round", &w[nr * 4 * g_aes_nb[mode]], 4 * g_aes_nb[mode]);
if (nr > 0) {
if (nr < g_aes_rounds[mode]) {
aes_dump(" mix", s, 4 * g_aes_nb[mode]);
/* do MixColumns */
inv_mix_columns(mode, s);
}
/* do ShiftRows */
aes_dump(" shift", s, 4 * g_aes_nb[mode]);
inv_shift_rows(mode, s);
/* do SubBytes */
aes_dump(" sub", s, 4 * g_aes_nb[mode]);
inv_sub_bytes(mode, s);
}
aes_dump(" state", s, 4 * g_aes_nb[mode]);
}
/* save state (cypher) to user buffer */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
data[i + j] = s[j];
printf("Output:\n");
aes_dump("plain", &data[i], 4 * g_aes_nb[mode]);
}
return 0;
}
int aes_decrypt_ecb(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key)
{
return aes_decrypt(mode, data, len, key);
}
int aes_decrypt_cbc(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key, uint8_t *iv)
{
uint8_t w[4 * 4 * 15] = {0}; /* round key */
uint8_t s[4 * 4] = {0}; /* state */
uint8_t v[4 * 4] = {0}; /* iv */
int nr, i, j;
/* key expansion */
aes_key_expansion(mode, key, w);
memcpy(v, iv, sizeof(v));
/* start data cypher loop over input buffer */
for (i = 0; i < len; i += 4 * g_aes_nb[mode]) {
/* init state from user buffer (cyphertext) */
for (j = 0; j < 4 * g_aes_nb[mode]; j++)
s[j] = data[i + j];
/* start AES cypher loop over all AES rounds */
for (nr = g_aes_rounds[mode]; nr >= 0; nr--) {
aes_dump("input", s, 4 * g_aes_nb[mode]);
/* do AddRoundKey */
aes_add_round_key(mode, s, w, nr);
aes_dump(" round", &w[nr * 4 * g_aes_nb[mode]], 4 * g_aes_nb[mode]);
if (nr > 0) {
if (nr < g_aes_rounds[mode]) {
aes_dump(" mix", s, 4 * g_aes_nb[mode]);
/* do MixColumns */
inv_mix_columns(mode, s);
}
/* do ShiftRows */
aes_dump(" shift", s, 4 * g_aes_nb[mode]);
inv_shift_rows(mode, s);
/* do SubBytes */
aes_dump(" sub", s, 4 * g_aes_nb[mode]);
inv_sub_bytes(mode, s);
}
aes_dump(" state", s, 4 * g_aes_nb[mode]);
}
/* save state (cypher) to user buffer */
for (j = 0; j < 4 * g_aes_nb[mode]; j++) {
uint8_t p = s[j] ^ v[j];
v[j] = data[i + j];
data[i + j] = p;
}
}
return 0;
}
void aes_cypher_128_test()
{
#if 1
uint8_t buf[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
#else
uint8_t buf[] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d,
0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34 };
uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
#endif
printf("\nAES_CYPHER_128 encrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_encrypt(AES_CYPHER_128, buf, sizeof(buf), key);
printf("\nAES_CYPHER_128 decrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_decrypt(AES_CYPHER_128, buf, sizeof(buf), key);
}
void aes_cypher_192_test()
{
uint8_t buf[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 };
printf("\nAES_CYPHER_192 encrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_encrypt(AES_CYPHER_192, buf, sizeof(buf), key);
printf("\nAES_CYPHER_192 decrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_decrypt(AES_CYPHER_192, buf, sizeof(buf), key);
}
void aes_cypher_256_test()
{
uint8_t buf[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};
printf("\nAES_CYPHER_256 encrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_encrypt(AES_CYPHER_256, buf, sizeof(buf), key);
printf("\nAES_CYPHER_256 decrypt test case:\n");
printf("Input:\n");
aes_dump("data", buf, sizeof(buf));
aes_dump("key ", key, sizeof(key));
aes_decrypt(AES_CYPHER_256, buf, sizeof(buf), key);
}
AES.h
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
AES_CYPHER_128,
AES_CYPHER_192,
AES_CYPHER_256,
} AES_CYPHER_T;
#ifdef _MSC_VER
#if _MSC_VER >= 1600
#include <cstdint>
#else
typedef __int8 int8_t;
typedef __int16 int16_t;
typedef __int32 int32_t;
typedef __int64 int64_t;
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#endif
#elif __GNUC__ >= 3
#include <cstdint>
#endif
int aes_encrypt_ecb(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key);
int aes_decrypt_ecb(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key);
int aes_encrypt_cbc(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key, uint8_t *iv);
int aes_decrypt_cbc(AES_CYPHER_T mode, uint8_t *data, int len, uint8_t *key, uint8_t *iv);
#ifdef __cplusplus
};
#endif
main.cpp
#include <stdio.h>
#include "AES.h"
static void pchar(uint8_t* str)
{
unsigned char i;
for (i = 0; i < 32; ++i)
printf("%c", str[i]);
printf("\n");
}
int main(int argc, char *argv[]) {
/* 128 bit key */
uint8_t key[16] = {
0x54, 0x72, 0x61, 0x63, 0x65, 0x72, 0x50, 0x69,
0x64, 0x3a, 0x09, 0x30, 0x0a, 0x66, 0x6c, 0x67
};
uint8_t iv[16] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
uint8_t ciphertext[32] = {
0xd0, 0x60, 0xf7, 0xc6, 0x95, 0x42, 0x22, 0xfd,
0xe3, 0x6b, 0x7e, 0x9c, 0xa1, 0xc9, 0xd8, 0xfa,
0xcf, 0x82, 0xc8, 0x76, 0xf8, 0xcb, 0x7c, 0x6f,
0xf8, 0x7f, 0x99, 0x5a, 0x12, 0x62, 0xc6, 0xb6
};
uint8_t plaintext[32];
aes_decrypt_cbc(AES_CYPHER_128, ciphertext,32 , key, iv);
pchar(ciphertext);
printf("\n");
return 0;
}
解出flag:wmctf{e78ce1a3ac4be37a96e27e98c}